Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
نویسندگان
چکیده
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by descending control. This pEPSP is released from inhibition immediately after injury but does not produce a long-lasting reflex because of a lack of motoneuron excitability. With chronic injury the motoneuron excitability is increased markedly, and the pEPSP then triggers sustained motoneuron discharges associated with long-lasting reflexes and muscle spasms.
منابع مشابه
Spastic long-lasting reflexes of the chronic spinal rat studied in vitro.
Over the months following sacral spinal cord transection in adult rats, a pronounced spasticity syndrome emerges in the affected tail musculature, where long-lasting muscle spasms can be evoked by low-threshold afferent stimulation (termed long-lasting reflex). To develop an in vitro preparation to examine the neuronal mechanisms underlying spasticity, we removed the whole sacrocaudal spinal co...
متن کاملRole of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury.
The recovery of persistent inward currents (PICs) and motoneuron excitability after chronic spinal cord transection is mediated, in part, by the development of supersensitivity to residual serotonin (5HT) below the lesion. The purpose of this paper is to investigate if, like 5HT, endogenous sources of norepinephrine (NE) facilitate motoneuron PICs after chronic spinal transection. Cutaneous-evo...
متن کاملDemystifying Spasticity: Reply to Dietz.
REPLY: I was glad to read Dr. Volker Dietz’s recent letter to the editor (Dietz 2007) comparing his work on spasticity in humans to my studies of spasticity in the sacral spinal rat (Bennett et al. 2004). His comments highlight many of the confusions that have shrouded the study of spasticity and give me a chance to clear the air on this topic. The first confusion relates to the complexity of s...
متن کاملStudies on the spastic rat: an adequate model for human spastic movement disorder?
TO THE EDITOR: For the successful translation of basic research to humans, the adequacy of the animal model being studied is of crucial importance. With respect to the frequently occurring spastic syndrome, as a consequence of brain or spinal cord damage, the spastic rat tail is commonly applied as a model. Animal studies using this model focus on the mechanisms underlying increased neuronal ac...
متن کاملTail muscles become slow but fatigable in chronic sacral spinal rats with spasticity.
Paralyzed skeletal muscle sometimes becomes faster and more fatigable after spinal cord injury (SCI) because of reduced activity. However, in some cases, pronounced muscle activity in the form of spasticity (hyperreflexia and hypertonus) occurs after long-term SCI. We hypothesized that this spastic activity may be associated with a reversal back to a slower, less fatigable muscle. In adult rats...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 5 شماره
صفحات -
تاریخ انتشار 2004